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Abstract

Spacecraft design optimization is a domain that can benefit
from the application of optimization algorithms such as ge-
netic algorithms. However, there are a number of practical
issues that make the application of these algorithms to real-
world spacecraft design optimization problems difficult in
practice. In this paper, we describe DEVO, an evolutionary
optimization system that addresses these issues and pro-
vides a tool that can be applied to a number of real-world
spacecraft design applications. We describe two current ap-
plications of DEVO: physical design of a Mars Microprobe
Soil Penetrator, and system configuration optimization for
a Neptune Orbiter.

1 Introduction

In theory, many aspects of spacecraft design can be viewed
as constrained optimization problems. Given a set of de-
cision variables X and a set of constraints C on X , con-
strained optimization is the problem of assigning values to
X that minimize or maximize an objective function F de-
fined on X subject to the constraints C. In practice, there
are a number of theoretical and practical obstacles that make
constrained optimization of spacecraft designs difficult.

First, while optimization of smooth, convex objective
functions is well understood (and efficient algorithms are
known to exist, see, for example, [Fle87]), global optimiza-
tion on surfaces with many local optima is not. Traditional
approaches to optimization usually fare poorly on these so-
called “rugged” surfaces, which are often characteristic of
real-world optimization problems.

Second, many real-world optimization problems are
black-box optimization problems, in which the structure
of the cost function is opaque. That is, it is not feasible to
analyze the cost surface by analytic means in order to guide
an optimization algorithm. Often, this occurs when F (X)
is computed by a complex simulation about which the op-

timization algorithm has no information (e.g., to evaluate
a candidate spacecraft design, we could simulate its opera-
tions using a suite of legacy FORTRAN code about which
very little is known except for its I/O specifications). Black-
box optimization problems of this kind are challenging from
a practical point of view for two reasons: 1) Executing a
black-box simulation in order to evaluate a candidate so-
lution is usually very expensive relative to, for example,
evaluating a cost function that is expressed as a system of
equations, and can take on the order of several minutes.
This is particularly problematic because optimization algo-
rithms for black-box problems are necessarily blind search
algorithms that must repeatedly choose sample points from
the solution space, evaluate them by running the simula-
tion, and then apply various heuristics in order to choose
the next points to sample, 2) Interfacing optimization tools
to black-box simulations can be difficult, particularly when
the black box is a complex software system that involves
various components written in different languages, possibly
running on a distributed environment running on a number
of different platforms.

Finally, many spacecraft design engineers do not have the
optimization expertise required to apply state of the art al-
gorithms to their problems. Obtaining this expertise is often
prohibitively expensive; as a consequence, optimization us-
ing algorithmic methods is sometimes not even attempted,
because of the perception that it is not worth the effort and
expense.

In this paper, we describe Design Evolver (DEVO), an
optimization system developed in an effort to address these
issues. To address the problem of optimization of difficult
cost surfaces, DEVO implements a generic, reconfigurable
implementation of an evolutionary optimization algorithm.
To overcome the practical difficulties described above that
arise when designing tools for black-box optimization prob-
lems, DEVO is integrated with MIDAS [GPS95], a recently
developed integrated spacecraft design environment, mak-
ing it possible to apply automated optimization to any space-
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craft design model specified in this environment.
The rest of this paper is organized as follows. Section

2 describes the architecture of the DEVO system, focusing
on the practical issues that arise in the integration of an evo-
lutionary optimization algorithm into a spacecraft design
environment, and the automated reconfiguration of the op-
timization algorithm for a particular problem instance. In
Section 3, we describe two spacecraft design optimization
problems which are currently being used as testbed appli-
cations for DEVO: the NASA New Millennium DS-2 Mars
Microprobe, and the Neptune Orbiter spacecraft.

2 The Design Evolver (DEVO) System

DEVO is a system for spacecraft design optimization cur-
rently being developed at the Jet Propulsion Laboratory
(JPL). The goal of DEVO is to provide an optimization tool
that is seamlessly integrated into an existing computer-aided
design (CAD) environment for spacecraft, which enables
users to apply optimization algorithms, including evolu-
tionary algorithms, with a minimal amount of human ef-
fort. A fundamental assumption in the DEVO design is
that CPU cycles are plentiful and cheap relative to the cost
of an engineer hand-tuning an optimization engine. In this
section, we describe the DEVO system. We first describe
the evolutionary optimization algorithms implemented in
DEVO. We then describe MIDAS, the design environment
into which DEVO has been integrated. Then, we describe
various features of DEVO that address the practical issues
that arise in the application of evolutionary optimization
techniques to real-world, spacecraft design problems.

2.1 Reconfigurable Evolutionary Algorithms

The central component of DEVO is the Reconfigurable Evo-
lutionary Algorithm (REAL). The REAL is an implemen-
tation of a generic evolutionary optimization strategy that
can be reconfigured at runtime to behave as one of the vari-
ous classes of evolutionary algorithms. Figure 1 (following
[BS96]) shows the general schema for evolutionary algo-
rithms which the REAL implements.

Briefly, an evolutionary algorithm works as follows: a
population of sample points from the cost surface is gen-
erated. In a process analogous to biological evolution, this
population is evolved by repeatedly selecting (based on rela-
tive optimality) members of the population for reproduction,
and recombining/mutating to generate a new population.

By providing different implementations of functions such
as initialize, recombine, mutate, and select, and a selection
of encodings (representations) of solutions (e.g., bit-string
encoding, possibly with Gray coding, floating point repre-
sentations, etc.) that can be chosen at runtime, it is possible
to reconfigure the REAL to simulate a wide variety of evo-

t := 0
initialize P (t);
evaluate P (t);
while not terminate do
P 0(t) := recombine P (t);
P 00(t) := mutate P 0(t);
evaluate P (t);
P (t+ 1) := select (P 00(t)[Q);
t := t+ 1;

end while

Figure 1: Algorithm schema for an evolutionary algorithmP is a
population of candidate solutions;Q is a special set of individuals that has
to be considered for selection, e.g.,Q = P (t).

lutionary algorithms. For example, using a null recombine
function and implementing a mutate function that applies
Gaussian mutation, we achieve the canonical Evolutionary
Programming (cf., [Fog95]) algorithm.

Currently, the REAL supports bit-string representations
of numerical parameters, as well as floating point number
representations. Various mutation, recombination, and se-
lection operators are available. Furthermore, the REAL
supports a number of different population structures, in-
cluding the traditional generational population structure
[Gol89], a steady-state population structure [Sys89], and a
distributed population structure [Tan89]. Thus, the REAL
can be configured to simulate a wide range of common
Genetic Algorithm (cf. [Gol89]) and Evolutionary Pro-
gramming (cf. [Fog95]) variants.

2.2 Spacecraft Design Model

A spacecraft design model is a software simulation of a
spacecraft design. The design model takes as input de-
cision variables to be optimized, and outputs an objective
function value, which is assigned as the result of an arbitrar-
ily complex computation (i.e., the simulator is a black-box
simulation).

Thus, the design model is domain-specific, and is pro-
vided by the end users, i.e., spacecraft designers. In order
for an optimization tool such as DEVO to be useful in
practice, it must support a wide range of design models,
which may consist of models implemented using various
languages on different platforms. It is not feasible to expect
spacecraft designers to implement their models in a particu-
lar language on a particular platform – if such inconvenient
constraints were imposed, the optimization system will not
be used by spacecraft designers.

The Multidisciplinary Integrated Design Assistant for
Spacecraft (MIDAS) [GPS95] is a computer-aided design
environment developed at JPL that allows a user to integrate
a system of (possibly distributed) design model components
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Figure 2: Screen shot of a MIDAS methogram (part of the Neptune
Orbiter model).

using a methogram, a graphical diagram depicting the data
flow of the system. Each node in the methogram corre-
sponds to a design model component, which may be one
of 1) a model in a commercial design tool such as IDEAS,
NASTRAN, or SPICE, 2) a program written in C, C++, or
FORTRAN, 3) a MIDAS built-in tool, or 4) an embedded
methogram (i.e., methograms can be hierarchical). Inputs to
nodes in the methogram correspond to input parameters for
the component represented by the node, and outputs from a
methogram node correspond to output values computed by
the component. Since it was implemented as a distributed
object system and since an output node can be used to com-
pute an arbitrary function of the parameters in the model,
MIDAS provides a uniform interface to a wide variety of
design models without requiring optimization algorithms to
have strong dependencies on the target simulation. Figure
2 shows a screen shot of the MIDAS methogram for the
Neptune Orbiter model.

2.3 Automated Configuration of the REAL

As we mentioned in Section 1, a significant practical obsta-
cle to applying optimization algorithms to spacecraft design
is the optimization knowledge and effort required of space-
craft designers. We therefore designed DEVO to be usable
with as little input as possible beyond what is already pro-
vided by the user in the MIDAS spacecraft design model.

In order to run DEVO, the user is required to input the
following:

� A MIDAS methogram that encapsulates the design
model;

� A list of decision variables, as well as ranges of their

possible values. These may be continuous, discrete,
or enumerated types;1

� An output from a methogram node that corresponds to
the user’s objective function value; and

� A termination condition for a run of the optimization
algorithm. This can be either 1) a time limit, 2) a max-
imum number of simulation runs, or 3) a simple check
for convergence of the algorithm, i.e., no improvement
is made for some number of simulation runs (a default
value is provided).

The user input listed above is sufficient for DEVO to
automatically configure the REAL to an appropriate default
configuration and run the evolutionary algorithm. Based
on the decision variable types and ranges specified by the
user, the genome evolved by the REAL is appropriately
configured, and the evolutionary algorithm is executed. A
user can, of course, manually configure the REAL using
either a command-line or graphical user interface.

Thus, the effort and knowledge required by the spacecraft
designer to run DEVO is minimal, since essentially all that
is required for a user to use DEVO to optimize a design is to
specify the decision variables and the constraints on them,
and to specify an objective function.2

We should make it clear that by no means are we claiming
that DEVO can provide a default configuration that works
well for all spacecraft design problems. In fact, in the
absence of any knowledge of the cost surface structure,
it is quite possible that any default configuration of the
REAL may be no better than random search.3 However,
even if the default configuration chosen by DEVO performs
relatively poorly, we argue that applying some optimization
algorithm is better than not applying any optimization at
all (particularly when computational resources are readily
available).

When a run of a particular configuration has terminated,
DEVO continues the optimization process by saving the best
solution found so far, and restarting the optimization pro-
cess using another configuration.4 This process is repeated
until terminated by the user. The strategy currently used by
DEVO to choose the next REAL configuration is a simple
randomized strategy: generate the next configuration ran-
domly, the only constraint being that the configuration is
compatible with the decision variable types.5 The general
problem of adaptive problem solving, i.e., reconfiguring a

1Enumerated types are mapped onto discrete values by DEVO.
2In many cases, this objective is already available in the methogram.
3See [WM94] for a recent theoretical perspective on this issue.
4We are currently investigating whether it is better to start the next

optimization run from scratch, or to seed the initial population using
solutions found in previous runs.

5It is acceptable to repeat configurations, since the performance of
evolutionary algorithms is stochastic.
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problem solver to perform well on a particular problem in-
stance, poses many difficult theoretical challenges, and is
beyond the scope of this paper (see [FCM+97] for a more
detailed discussion of this problem, as well as more sophis-
ticated solutions that we are currently investigating).

2.4 Optimization as an Interactive Process

Most of the work on evolutionary optimization focuses on
optimization as a fully automated process, in which the
initialize step in Figure 1 is accomplished by random ini-
tialization. Design optimization, however, is often an inter-
active process, since the designers who developed the model
have sufficient domain expertise to suggest some “reason-
able guesses” as to what good decision variable parameters
might be. Indeed, in many cases, it is difficult for a com-
pletely automated optimization process to produce designs
of better quality than a human engineer.

A reasonable alternative is to attempt local optimization
of a design that is initially specified by a human engineer.
Therefore, in addition to the usual random initialization
functions, we have implemented an initialization function
for the REAL that generates the initial population based on
random perturbations of decision variable parameters which
the user has specified in the model. The perturbations apply
random noise with Gaussian or uniform noise applied at the
user’s discretion.

2.5 Additional Implementation Details

2.5.1 Handling Instabilities in Black-Box Simulation

A common problem when trying to apply evolutionary al-
gorithms to black-box simulations is the possibility of in-
stability in the simulations. Spacecraft design models are
often one-of-a-kind prototype systems, designed and im-
plemented to provide proof of concept in the hands of an
experienced engineer. Consequently, they are not neces-
sarily robust enough to be executed with the thousands of
different assignments of decision variable values that an
evolutionary algorithm attempts. A particular input param-
eter combination could, for example, cause an arithmetic
exception, causing the simulation to crash. If the optimiza-
tion system is not designed to anticipate such failures, the
whole optimization system could fail as a result. It could
be argued that such instability could be symptomatic of an
unreliable simulator whose results should not be trusted at
all (and therefore needs to be fixed immediately). How-
ever, we take the view that it is not feasible to demand that
the simulation software be made completely robust for the
sake of the optimization system and designed DEVO so
that it would circumvent simulation instability as much as
possible.

DEVO protects the optimization system from simulation
software instability by exploiting fault detection features

built into MIDAS, and by separating the optimization pro-
cess from the simulation process as much as possible. MI-
DAS is capable of detecting common failures (e.g., core
dumps, arithmetic exceptions) that occur when executing a
process that corresponds to a node in a methogram. DEVO
monitors this information, and immediately aborts the ex-
ecution of the simulation upon detecting a failure. Some
failures can actually cause MIDAS itself to crash. Since
DEVO is implemented as a separate process which invokes
MIDAS and manipulates it through its CORBA interface,
DEVO can detect MIDAS crashes and abandon the can-
didate solution evaluation that called the failed MIDAS
simulation. It is, of course, not possible to detect with cer-
tainty if a simulation has entered an infinite loop; however,
if DEVO has been waiting for the result of a simulation for
an abnormally long time (e.g., if a simulation run is taking
n standard deviations more time than an average simulation
run to date), then it is assumed that the simulation is trapped
in a loop, and DEVO will terminate the simulation.

An interesting issue is what to do with the evaluation of
solutions that cause failures that are detected as described
above. We currently apply the simple policy of assigning
the worst possible fitness values to these solutions. On
one hand, this has the effect of causing the evolutionary
algorithm to avoid solutions that are very similar to the of-
fending solutions. Assuming that the simulation is unstable
in regions of the solution space, rather than isolated points,
this is a reasonable policy. On the other hand, if this is not
the case, then this policy could cause an undesirable bias in
the evolutionary search. We are currently investigating the
significance of this bias.

2.5.2 Parallelization

Executing a complex spacecraft design model simulation
often takes a significant amount of time. For example, a
single execution of our current Neptune Orbiter (see 3.2)
takes several minutes on a Sun Ultra workstation. Given
that a single run of an evolutionary algorithm requires hun-
dreds to thousands of candidate solution evaluations, this
poses a serious problem, if we want to complete the opti-
mization processes in a reasonable amount of time. Fortu-
nately, evolutionary algorithms are particularly well-suited
to parallelization, since each candidate solution can be eval-
uated independently of the other solutions, i.e., the evalu-
ate step in Figure 1 can be parallelized with near-linear
efficiency. Therefore, DEVO distributes simulations over
a network of workstations using Parallel Virtual Machines
(PVM) [GBD+94].

3 Spacecraft Optimization Problems

In this section, we describe two specific spacecraft design
optimization problems to which we are currently applying
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the DEVO system. The first is a low-level optimization
of the physical dimensions of a soil penetrator microprobe.
The second is a system-level optimization of the configura-
tion of the communication system of an orbiter spacecraft.
These examples are illustrative of the wide range of dif-
ferent spacecraft design optimization problems to which
DEVO can be applied.

3.1 The Mars Soil Penetrator Microprobe

As part of the NASA New Millennium program, two mi-
croprobes, each consisting of a very low-mass aeroshell and
penetrator system, are planned to launch in January, 1999
(attached to the Mars Surveyor lander), to arrive at Mars
in December, 1999. The 3kg probes will enter the Martian
atmosphere and orient themselves to meet heating and im-
pact requirements. Upon impacting the Martian surface, the
probes will punch through the entry aeroshell and separate
into fore- and aftbody systems. The forebody will reach a
depth of 0.5 to 2 meters, while the aftbody will remain on
the surface for communications.

Each penetrator system includes a suite of highly minia-
turized components needed for future micro-penetrator net-
works: ultra low temperature batteries, power microelec-
tronics, and advanced microcontroller, a microtelecommu-
nications system and a science payload package (a micro-
laser system for detecting subsurface water).

The optimization of physical design parameters for a
soil penetrator based on these Mars microprobes is the first
testbed for the DEVO system. The microprobe optimization
domain in its entirety is very complex, involving three stages
of simulation: separation from the Mars Surveyor, aerody-
namical simulation, and soil impact and penetration. The
complete design model for the penetrator is currently under
development. Below, we describe the current model, which
implements the simulation of stage 3 (impact/penetration).

Given a distribution on parameters describing the initial
conditions including the angle of attack of the penetrator,
the impact velocity, and the hardness of the target surface,
the optimization problem is to select the total length and
outer diameter of the penetrator, so as to maximize the
expected ratio of the depth of penetration to the length of
the penetrator. We maximize this ratio, rather than simply
maximizing the depth of penetration, since for the Mars
microprobe science mission, the depth of penetration should
be at least as large as the overall length of the penetrator).

Using the default REAL configuration generated by
DEVO (a canonical generational GA using bit-string en-
codings, one-point crossover, bit-flip mutation, population
size of 50), it is consistently possible to generate a near-
optimal design after about 50 generations.

3.2 The Neptune Orbiter

Neptune Orbiter is a mission concept currently being stud-
ied under the Outer Planet Orbital Express program at the
Jet Propulsion Laboratory. The goals of the mission are
to put a spacecraft in orbit around Neptune using state-of-
the-art technologies in the areas of telecommunications,
propulsion, orbit insertion, and autonomous operations.
The spacecraft is expected to arrive at Neptune (30 a.u.)
5 years after launch in 2005 using a Delta launch vehicle.
The subsystem requirements include 100 kbps data rate,
solar electric propulsion, solar concentrator power source
and a cost of less than $400 million (in FY 94 dollars).

For the initial phase of the optimization effort, the focus
is on the orbital operations of Neptune Orbiter. The launch
and cruise phases of the mission will be included in the
optimization once the orbiter problem is well understood.
The driving constraints of the orbiter problem are the opti-
cal communication aperture, transmit power and spacecraft
mass. The transmit power is a direct input into the inte-
grated spacecraft design model. The other inputs include
the science observation time per orbit and the data compres-
sion factor. The output of the model that is being maximized
is the science data volume per orbit. For designs in which
the spacecraft mass is greater than 260 Kg, the data volume
output is zero. A spacecraft with a dry mass of greater than
260 Kg is too heavy to lift on the target launch vehicle.
Thus the mass limit constrains the optimization problem.
Currently, we are using cost models in conjunction with
the simulation of the orbiter as described above to obtain
our cost function - a quantitative estimate of the science
return (measured in, e.g., volume of science data obtained
per dollar cost of the spacecraft).

4 Conclusions

Designing a widely applicable tool for black-box design
optimization poses a significant technical challenge. In this
paper, we have described DEVO, an evolutionary optimiza-
tion system for spacecraft design that provides a design
optimization tool that can be applied to real-world space-
craft design optimization problems with minimal human
effort.

Much of the recent work in the evolutionary algorithm
literature focuses on development of specialized representa-
tions and techniques to customize an evolutionary algorithm
for a particular application. While we agree that develop-
ing specialized algorithms for particular applications is the
best methodology for obtaining the best performance for
any particular domain, this approach is often infeasible in
practice, due to the human expertise and effort required to
develop a specialized algorithm.

For problems that are unique in nature, a promising ap-
proach is to provide tools that make it possible to apply
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very general methods with little overhead. As long as the
application of the method is virtually free of human effort,
it is worthwhile to use available computational resources to
approach the problem in a “brute-force” manner off-line,
since the potential benefits of improving design quality can
be quite substantial. The development of DEVO is a first
step in this direction.

So far, we have found that the default behavior of DEVO
has been sufficient for finding near-optimal solutions to the
Mars soil penetrator microprobe problem.6 However, we
believe that in order for reconfigurable systems such as
DEVO to become more useful, techniques for intelligently,
automatically configuring the system to suit a particular
problem instance must be developed and integrated into
the system. We are currently investigating this problem
[FCM+97].

Finally, we note the utility of system development efforts
such as DEVO to the evolutionary algorithm research com-
munity. A myriad of promising approaches to evolutionary
optimization have been proposed in the literature. However,
the success of a particular technique for a given problem
depends largely on the match between the technique and the
problem [WM94], and thus, assessing the utility of a par-
ticular approach is mostly an empirical, problem-specific
issue. Since applying a new technique to a real-world
problem is often difficult and time-consuming, evolution-
ary algorithm researchers often restrict their evaluation of
new approaches to synthetic cost functions (e.g., [DeJ75],
[WMRD95]) or other easily implemented problems (e.g.,
the Traveling Salesperson Problem) whose relationship to
most real-world problems is tenuous. By providing a sta-
ble, uniform interface to a wide variety of black-box opti-
mization problems, DEVO provides evolutionary algorithm
researchers with a framework into which many new tech-
niques can be easily integrated, enabling the evaluation
of new approaches on real-world problems. As an exam-
ple, we have recently integrated an incremental evolution
technique [FK95] into DEVO, and demonstrated its util-
ity (compared to standard genetic algorithms) on the DS-2
probe design problem (see [FCM+97] for details).
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